A single interval based classifier
نویسندگان
چکیده
In many applications, it is desirable to build a classifier that is bounded within an interval. Our motivating example is rooted in monitoring in a stamping process. A novel approach is proposed and examined in this paper. Our method consists of three stages: (1) A baseline of each class is estimated via convex optimization; (2) An “optimal interval” that maximizes the difference among the baselines is identified; (3) A classifier that is based on the “optimal interval” is constructed. We analyze the implementation strategy and properties of the derived algorithm. The derived classifier is named an interval based classifier (IBC) and can be computed via a low-order-of-complexity algorithm. Comparing to existing state-of-the-art classifiers, we illustrate the advantages of our approach. To showcase its usage in applications, we apply the IBC to a set of tonnage curves from stamping processes, and observed superior performance. This method can help identifying faulty situations in manufacturing. The computational steps of IBC take advantage of operationsresearch methodology. IBC can serve as a general data mining tool, when the features are based on single intervals.
منابع مشابه
Classifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملComparative Study on Classification of Ecg Arrhythmia Using Single Classifier and Ensemble of Classifiers
An electrocardiogram (ECG) is a bioelectrical signal which records the heart’s electrical activity versus time. The interpretation of ECG signal is an application of pattern recognition. The techniques used in this paper comprise: signal preprocessing, R peak detection, QRS reconstruction, RR interval detection, feature extraction and linear classifier model versus ensemble of classifier model....
متن کاملUniversal Approximation of Interval-valued Fuzzy Systems Based on Interval-valued Implications
It is firstly proved that the multi-input-single-output (MISO) fuzzy systems based on interval-valued $R$- and $S$-implications can approximate any continuous function defined on a compact set to arbitrary accuracy. A formula to compute the lower upper bounds on the number of interval-valued fuzzy sets needed to achieve a pre-specified approximation accuracy for an arbitrary multivariate con...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملRecognition of Multiple PQ Issues using Modified EMD and Neural Network Classifier
This paper presents a new framework based on modified EMD method for detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional EMD process. This scheme makes EMD better by eliminating the mode mixing problem. This is a two step algorithm; in the first step, input PQ signal is decomposed in low and high frequency components using DWT. In the second stage, the low freq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals OR
دوره 216 شماره
صفحات -
تاریخ انتشار 2014